Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Cyanomethanaminium tetrafluoroborate

Meng Ting Han and Yuan Zhang*

Ordered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: zhangshelley86@hotmail.com

Received 19 June 2010; accepted 1 July 2010
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.034 ; w R$ factor $=0.097$; data-to-parameter ratio $=10.2$.

In the title compound, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{BF}_{4}^{-}$, the cations and anions are connected via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds, forming a three-dimensional network.

Related literature

For background to the development of ferroelectric pure organic or inorganic compounds, see: Haertling (1999); Homes et al. (2001). For thesynthesis of a variety of compounds with potential piezoelectric and ferroelectric properties, see: Fu et al. (2009); Hang et al. (2009). For comparison bond lengths and bond angles, see: Wishkerman \& Bernstein (2006).

Experimental

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{2}{ }^{+} \cdot \mathrm{BF}_{4}{ }^{-}$
$M_{r}=143.89$
Orthorhombic, Pbca
$a=9.790(2) \AA$
$b=10.204$ (2) \AA
$c=11.057$ (2) A
$V=1104.6(4) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

Data collection

Rigaku Mercury2 diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\text {min }}=0.815, T_{\text {max }}=1.000$

8605 measured reflections 969 independent reflections 891 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.046$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.097 \quad$ independent and constrained
$S=0.74$ refinement
969 reflections
95 parameters
$\Delta \rho_{\max }=0.21 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{~F}^{\mathrm{i}}$	0.97	2.53	$3.474(2)$	166
$\mathrm{C} 1-\mathrm{H} 1 B \cdots \mathrm{~F}^{\mathrm{ii}}$	0.97	2.45	$3.407(2)$	169
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{~F} 3$	$0.89(2)$	$1.97(2)$	$2.850(2)$	$169(2)$
$\mathrm{N} 2-\mathrm{H} 2 B \cdots \mathrm{~F}^{\text {iii }}$	$0.91(3)$	$2.03(3)$	$2.863(2)$	$152(2)$
$\mathrm{N} 2-\mathrm{H} 2 C \cdots 4^{\text {iv }}$	$0.87(3)$	$2.04(3)$	$2.844(2)$	$154(2)$

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+\frac{1}{2},-y+1, z+\frac{1}{2}$; (iii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$; (iv) $x-\frac{1}{2},-y+\frac{3}{2},-z+1$.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors are grateful to the Starter Fund of Southeast University for financial support to buy the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2302).

References

Fu, D. W., Ge, J. Z., Dai, J., Ye, H. Y. \& Qu, Z. R. (2009). Inorg. Chem. Comтии. 12, 994-997.
Haertling, G. H. (1999). J. Am. Ceram. Soc. A82, 797-810.
Hang, T., Fu, D. W., Ye, Q. \& Xiong, R. G. (2009). Cryst. Growth Des. A5, 2026-2029.
Homes, C. C., Vogt, T., Shapiro, S. M., Wakimoto, S. \& Ramirez, A. P. (2001). Science, A293, 673-676.
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Wishkerman, S. \& Bernstein, J. (2006). CrystEngComm, 8, 245-249.

supplementary materials

```
Acta Cryst. (2010). E66, o1941 [ doi:10.1107/S1600536810025857]
```


Cyanomethanaminium tetrafluoroborate

M. T. Han and Y. Zhang

Comment

At present, much attention in ferroelectric material field is focused on developing ferroelectric pure organic or inorganic compounds (Haertling, 1999; Homes et al., 2001). Recently we have reported the synthesis of a variety of compounds (Fu et al., 2009; Hang et al., 2009), which have potential piezoelectric and ferroelectric properties. In order to find more dielectric ferroelectric materials, we have investigate the physical properties of the title compound. The dielectric constant of the title compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 3.6 to 4.7), suggesting that this compound should not be ferroelectric or there may be no distinct phase transition within the measured temperature range. Similarly, below the melting point (453 K) of the compound, the dielectric constant as a function of temperature also goes smoothly, and there is no dielectric anomaly observed (dielectric constant equaling to 3.6 to 4.7). Herein, we report the synthesis and crystal structure of the title compound.

The molecular structure of the title compund is presented in Fig. 1. The bond lengths and angles are within their normal ranges (Wishkerman \& Bernstein, 2006). The cations and anions are connected via intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds, forming a three dimensional network (Tab. $1 \&$ Fig. 2).

Experimental

A mixture of aminoacetonitrile hydrochloride $(0.095 \mathrm{~g}, 0.01 \mathrm{~mol})$ and tetrafluoro-borate sodium $(1.10 \mathrm{~g}, 0.01 \mathrm{~mol})$ in water $(20 \mathrm{ml})$ was stirred until clear. After several days, colourless prismatic crystals of the title compound were formed which were suitable for X-ray analysis.

Refinement

The methylene H -atoms were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.97 \AA$ and $U_{\text {iso }}(\mathrm{H})$ $=1.2_{\mathrm{eq}}(\mathrm{C})$. The H -atoms bonded to the N -atom were located from a difference map and were allowed to refine freely.

Figures

Fig. 1. Perspective structure of the title compound, showing the atom-numbering scheme.
Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. The crystal packing of the title compound viewed along the a axis showing the hydrogen bondings network.

supplementary materials

Cyanomethanaminium tetrafluoroborate

Crystal data

$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{2}^{+} \cdot \mathrm{BF}_{4}^{-}$
$M_{r}=143.89$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=9.790(2) \AA$
$b=10.204$ (2) \AA
$c=11.057(2) \AA$
$V=1104.6(4) \AA^{3}$
$Z=8$

Data collection

Rigaku Mercury2 (2x2 bin mode) diffractometer
Radiation source: fine-focus sealed tube graphite
Detector resolution: 13.6612 pixels mm^{-1}
CCD_Profile_fitting scans
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
$T_{\text {min }}=0.815, T_{\text {max }}=1.000$
8605 measured reflections
$F(000)=576$
$D_{\mathrm{x}}=1.730 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 970 reflections
$\theta=2.6-25.0^{\circ}$
$\mu=0.20 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, colorless
$0.20 \times 0.20 \times 0.20 \mathrm{~mm}$

969 independent reflections
891 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.046$
$\theta_{\text {max }}=25.0^{\circ}, \theta_{\text {min }}=3.4^{\circ}$
$h=-11 \rightarrow 11$
$k=-12 \rightarrow 12$
$l=-13 \rightarrow 13$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0711 P)^{2}+0.9831 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.21 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.19$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.034 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
F1	$0.20443(11)$	$0.51691(10)$	$0.27959(10)$	$0.0507(4)$
F3	$0.25530(11)$	$0.69102(10)$	$0.39731(9)$	$0.0482(4)$
F4	$0.39397(10)$	$0.51360(11)$	$0.39567(11)$	$0.0536(4)$
N2	$0.11384(16)$	$0.80444(15)$	$0.59675(13)$	$0.0363(4)$
F2	$0.18692(13)$	$0.50016(11)$	$0.48270(11)$	$0.0586(4)$
C1	$0.05747(17)$	$0.69059(16)$	$0.66197(16)$	$0.0380(4)$
H1A	-0.0034	0.6428	0.6086	0.046^{*}
H1B	0.1315	0.6323	0.6844	0.046^{*}
C2	$-0.01713(15)$	$0.72917(17)$	$0.77058(14)$	$0.0363(4)$
N1	$-0.07586(17)$	$0.75568(18)$	$0.85538(14)$	$0.0553(5)$
B1	$0.25945(17)$	$0.55466(18)$	$0.38936(15)$	$0.0305(4)$
H2C	$0.052(3)$	$0.861(3)$	$0.574(2)$	$0.079(8)^{*}$
H2B	$0.170(3)$	$0.852(2)$	$0.645(2)$	$0.079(8)^{*}$
H2A	$0.165(3)$	$0.778(2)$	$0.535(2)$	$0.070(7)^{*}$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	$0.0617(7)$	$0.0499(6)$	$0.0406(6)$	$-0.0010(5)$	$-0.0146(5)$	$-0.0072(4)$
F3	$0.0601(7)$	$0.0311(6)$	$0.0535(7)$	$0.0006(4)$	$0.0087(5)$	$-0.0054(4)$
F4	$0.0367(6)$	$0.0529(7)$	$0.0713(8)$	$0.0075(4)$	$-0.0063(5)$	$-0.0017(5)$
N2	$0.0375(8)$	$0.0398(8)$	$0.0314(8)$	$0.0024(6)$	$0.0054(6)$	$0.0001(6)$
F2	$0.0686(8)$	$0.0589(7)$	$0.0483(7)$	$-0.0096(6)$	$0.0185(6)$	$0.0086(5)$
C1	$0.0442(9)$	$0.0329(8)$	$0.0369(9)$	$0.0026(6)$	$0.0089(7)$	$-0.0006(7)$
C2	$0.0333(8)$	$0.0423(9)$	$0.0333(9)$	$0.0022(7)$	$0.0001(7)$	$0.0032(7)$
N1	$0.0533(9)$	$0.0722(12)$	$0.0404(9)$	$0.0060(8)$	$0.0127(7)$	$-0.0008(9)$
B1	$0.0320(9)$	$0.0299(9)$	$0.0296(9)$	$-0.0005(7)$	$0.0005(7)$	$-0.0006(6)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

F1-B1	$1.3828(19)$	$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	$0.89(3)$
F3—B1	$1.395(2)$	$\mathrm{F} 2-\mathrm{B} 1$	$1.371(2)$
F4—B1	$1.384(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.460(2)$

supplementary materials

N2-C1	1.475 (2)	C1-H1A	0.9700
N2-H2C	0.87 (3)	C1-H1B	0.9700
N2-H2B	0.91 (3)	C2-N1	1.133 (2)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{C}$	113.4 (17)	N2-C1-H1B	109.2
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	111.3 (16)	H1A-C1-H1B	107.9
$\mathrm{H} 2 \mathrm{C}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	104 (2)	N1-C2-C1	178.16 (19)
$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	110.3 (16)	F2-B1-F1	110.25 (14)
$\mathrm{H} 2 \mathrm{C}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	112 (2)	$\mathrm{F} 2-\mathrm{B} 1-\mathrm{F} 4$	109.41 (14)
$\mathrm{H} 2 \mathrm{~B}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	106 (2)	F1-B1-F4	109.31 (14)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2$	112.16 (14)	F2-B1-F3	110.01 (13)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.2	F1-B1-F3	108.78 (13)
N2-C1-H1A	109.2	F4-B1-F3	109.06 (13)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.2		

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{~F}^{\mathrm{i}}$	0.97	2.53	$3.474(2)$	166
$\mathrm{C} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{~F} 1^{\mathrm{ii}}$	0.97	2.45	$3.407(2)$	169
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{~F} 3$	$0.89(2)$	$1.97(2)$	$2.850(2)$	$169(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{~F} 1^{\mathrm{iii}}$	$0.91(3)$	$2.03(3)$	$2.863(2)$	$152(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{C} \cdots \mathrm{F}^{\text {iv }}$	$0.87(3)$	$2.04(3)$	$2.844(2)$	$154(2)$

Symmetry codes: (i) $-x,-y+1,-z+1$; (ii) $-x+1 / 2,-y+1, z+1 / 2$; (iii) $x,-y+3 / 2, z+1 / 2$; (iv) $x-1 / 2,-y+3 / 2,-z+1$.

supplementary materials

Fig. 1

supplementary materials

Fig. 2

